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Abstract 

Objective: Decision-tree methods are machine-learning methods which provide results that 

are relatively easy to interpret and apply by human decision makers. The resulting decision 

trees can show how baseline patient characteristics can be combined to predict treatment 

outcomes for individual patients, for example. This paper introduces GLMM trees, a decision-

tree method for multilevel and longitudinal data. Method: To illustrate, we apply GLMM 

trees to a dataset of 3,256 young people (mean age 11.33, 48% girls) receiving treatment at 

one of several mental-health service providers in the UK. Two treatment outcomes (mental-

health difficulties scores corrected for baseline) were regressed on 18 demographic, case and 

severity characteristics at baseline. We compared the performance of GLMM trees with that 

of traditional GLMMs and random forests. Results: GLMM trees yielded modest predictive 

accuracy, with cross-validated multiple R values of .18 and .25. Predictive accuracy did not 

differ significantly from that of traditional GLMMs and random forests, while GLMM trees 

required evaluation of a lower number of variables. Conclusion: GLMM trees provide a 

useful data-analytic tool for clinical prediction problems. The supplemental material provides 

a tutorial for replicating the GLMM tree analyses in R. 

Keywords: multilevel data, decision making, decision-tree methods, mixed-effects models, 

subgroup detection 
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Introduction 

Many empirical research questions in mental health are focused on decision making in 

clinical practice. For example: Which patients are (not) at risk for a recurrent disorder? Which 

patients will benefit most (least) from treatment? Such research questions are traditionally 

addressed using additive linear models, like the generalized linear model (GLM) or the 

generalized linear mixed-effects model (GLMM). For example, in recent publications in 

Psychiatry Research, GL(M)Ms were applied by O’Keeffe et al. (2018) to predict dropout 

among adolescents receiving psychotherapy, and by Koffmann (2018) to predict outcomes 

among adults receiving psychotherapy. Although such GL(M)Ms allow for identifying 

predictors associated with psychotherapy outcomes, they do not directly show what to do in 

clinical decision making. For example, if the predictor variable is continuous, where should 

we draw the line for deciding high versus low risk? And when some risk factors are present, 

but others absent, how should we combine the risk factors into a single decision?  

In contrast to traditional GL(M)Ms, recursive partitioning or decision-tree methods do 

show what to do in decision making. Instead of describing the association between predictor 

and outcome variables by a mathematical formula (e.g., 𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 + 𝑏𝑏3𝑥𝑥3), 

recursive partitioning methods describe the association between predictor and outcome 

variables by a binary decision tree. Such decision trees are easier to apply in clinical practice, 

where information, time and computational power are limited and costly (e.g., Gigerenzer, 

Todd, & the ABC Research Group, 1999). This relative ease of interpretation and application 

has led several authors of earlier studies published in Psychotherapy Research to apply 

decision-tree methods for predicting treatment outcomes (e.g., Berman & Hegel, 2014; 

Hannöver & Kordy, 2005; Hannöver, Richard, Hansen, Martinovich, & Kordy, 2002; Hansen, 

Kershaw, Kochman, & Sikkema, 2007). An additional advantage of decision-tree methods is 

their non-parametric nature: They do not require assumptions like linear associations or 
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normally distributed residuals, and allow for specifying a large number of potential predictor 

variables, which may even exceed the number of observations.  

The current paper aims to introduce a recent decision-tree method that allows for the 

analysis of multilevel and longitudinal datasets: GLMM trees (Fokkema, Smits, Zeileis, 

Hothorn, & Kelderman, 2018). Such data structures are commonly encountered in 

psychotherapy research, and GLMM trees may thus provide a useful data-analytic tool in such 

studies. The paper is structured as follows: In the remainder of the Introduction, we discuss 

the position of decision trees within the broader area of machine learning. Next, we discuss 

the building blocks of the GLMM tree algorithm. In the Method and Results section, we 

illustrate how the GLMM tree algorithm can provide a clinically useful alternative to 

traditional GLMMs. We apply the GLMM tree algorithm to an existing dataset from an earlier 

study on patient-level predictors of young people’s treatment outcomes in UK mental-health 

services (Edbrooke-Childs et al., 2017). We compare the resulting decision trees in terms of 

predictive accuracy and interpretability with the traditional GLMMs originally fitted to the 

data. We also compare the performance with that of random forests, a machine-learning 

algorithm which has often been found to rank highest in terms of predictive accuracy. In the 

Discussion section, we integrate our results with earlier findings on (mixed-effects) decision-

tree methods. For readers interested in fitting GLMM trees to their own data, the 

supplementary material provides a tutorial on how to fit GLMM trees in the statistical 

programming environment R (R Core Team, 2020). 

 

Decision Trees and Machine-Learning Methods 

Compared to other machine-learning algorithms for prediction, the main advantage of 

single decision trees is their interpretability: the tree-like structure is preeminently suited for 

practical decision making. At the same time, however, the tree-like structure is relatively 
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simple, so it may provide only a coarse approximation of very smooth or fine-grained 

associations possibly present in a dataset. As a result, single decision trees generally do not 

rank among the most accurate machine-learning methods (e.g., Fernández-Delgado, Cernadas, 

Barro, & Amorim, 2014; Gacto, Soto-Hidalgo, Alcalá-Fdez, & Alcalá, 2019; Zhang, Liu, 

Zhang, & Almpanidis, 2017).  

To improve the predictive accuracy of single decision trees, so-called ensembling 

techniques can be used. For example, techniques like bagging (Breiman, 1996), boosting 

(Schapire & Freund, 1995) and random forests (Breiman, 2001) grow a large number of trees 

on random samples of the original dataset. This allows the predictive model to flexibly 

approximate the associations present in a dataset in a smooth manner. As a result, these 

ensemble methods provide better predictive accuracy, exceeding that of any of the individual 

trees (e.g., Rokach, 2010). The main disadvantage of such tree ensembles is their complexity: 

instead of a single decision tree, the predictive model now consists of a large number 

(generally ≥ 500), that can no longer be visually grasped.  

This high predictive accuracy as well as high complexity is shared by other state-of-

the-art machine learning methods, like support vector machines and artificial neural networks. 

Studies comparing the predictive performance of machine-learning methods on a wide range 

of data problems generally find decision-tree ensembles, support vector machines, and 

sometimes artificial neural networks to rank highest in terms of predictive accuracy. For 

example, Gacto et al. (2019) found random forests and support vector machines to rank 

highest in solving non-linear regression problems. Zhang et al. (2017) found boosted tree 

ensembles matched or exceeded the predictive performance of support vector machines and 

random forests. Fernández-Delgado et al. (2014) found random forests to provide highest 

predictive performance, followed by support vector machines, neural networks and boosted 

tree ensembles.  
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The increase in predictive accuracy provided by methods like support vector 

machines, neural networks and decision-tree ensembles, however, comes at the cost of 

complexity. How these methods compute a predictions from the values of predictor variables 

is difficult, if not impossible, for humans to grasp. Several explanatory methods have 

therefore been proposed, which aim to explain how complex statistical methods arrive at their 

predictions (e.g., Lundberg & Lee, 2017; Ribeiro, Singh, & Guestrin, 2016). However, these 

methods currently suffer from several drabwacks. As noted by Carvalho, Pereira, and Cardoso 

(2019), there is no consensus on how to measure the quality of these explanations. Thus, there 

is no guarantee that the explanations provide enough detail to understand what the black-box 

method is doing (Rudin, 2019). Rudin (2019) also noted that black-box predictive models 

combined with (similarly complex) explanatory methods may yield complicated decision 

pathways that increase the likelihood of human error. This was corroborated by Kaur et al. 

(2020), who experimentally studied the use of explanatory methods among data scientists; 

they found that the explanations were often over-trusted and few users were able to accurately 

describe what the visualizations were showing. 

At the same time, a recent systematic review found no performance benefit of machine 

learning over logistic regression for clinical prediction models (Jie, Collins, Steyerberg, 

Verbakel, & van Calster, 2019), indicating that the trade-off between higher accuracy and 

lower complexity may not always hold. A possible explanation for this finding is that even for 

flexible models, in order to capture complex patterns, these patterns need to be observed 

repeatedly. This may require very large sample sizes, especially for the prediction of human 

behavior and life outcomes, which have been noted to be difficult to predict (e.g., Salganik et 

al., 2020). Earlier, Hand (2006) already noted that the gains in predictive performance offered 

by more complex methods over simpler ones are generally small, and that practical, real-

world characteristics of prediction problems may render such differences irrelevant.  
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Thus, whether for individual prediction problems a method with state-of-the-art 

predictive accuracy should be preferred over a simpler method likely depends on several 

characteristics of the data problem, such as the relative gain in predictive performance, the 

amount and cost of information required for making a prediction, the extent to which the 

training data is a random sample from the target population, and/or data quality (e.g., 

measurement error, mislabeled cases). Especially in situations where the gain in predictive 

accuracy offered by more complex methods is small, and/or where collecting and processing 

of information is costly, simpler methods like decision trees or (strongly) regularized GLMs 

may be preferred. 

 

Unbiased Recursive Partitioning and Extension to Multilevel and Longitudinal Data 
 

The GLMM tree algorithm is an extension of the unbiased recursive partitioning 

framework of Hothorn, Hornik, and Zeileis (2006) and Zeileis, Hothorn, and Hornik (2008). 

Unbiased here means that the methods do not present with a variable selection bias, in which 

variables with a larger number of categories or unique values are more likely to be selected 

for partitioning, even if they are no more informative than their competitors (e.g., White & 

Liu, 1994). Several of the earlier recursive partitioning methods, like the Classification and 

Regression Trees algorithm (CART; Breiman, Friedman, Olshen, & Stone, 1984), suffer from 

such a variable selection bias. The aforementioned studies published in Psychotherapy 

Research also employed the CART algorithm, or adjusted versions thereof. More recent 

recursive partitioning algorithms, like the classification tree algorithm of Kim and Loh 

(2001), the conditional inference tree algorithm of Hothorn et al. (2006), and the model-based 

recursive partitioning of Zeileis et al. (2008) do not suffer from this variable selection bias.  

These algorithms mitigate variable selection bias by separating variable and cut-point 

selection: in every node, the splitting variable is selected first, based on test statistics 
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quantifying the association between predictor and response variables. At each step, the 

variable with the lowest p value of the association test is selected for splitting. After selection 

of the splitting variable, the cut-point or splitting value is selected through optimizing the sum 

of the loss function in the two resulting nodes. The use of statistical tests for selection of 

splitting variables also provides a stopping rule: When none of the potential predictor 

variables in the current node has a p value below the pre-specified α level, splitting is halted. 

The GLMM tree algorithm is based on the GLM tree algorithm, a specific case of the 

model-based recursive partitioning algorithm of Zeileis et al. (2008). GLM trees fit a 

recursive partition based on a (generalized) linear model: The nodes in a GLM tree consist of 

subgroup-specific GLMs, which contain an intercept term and possibly the effects of one or 

more predictor variables. The subgroups are described in terms of additional covariates: 

variables that are used to define the partition or subgroups, which are not included as 

predictors of the GLM.  

The GLMM tree algorithm extends the GLM tree algorithm by accounting for possible 

dependence between observations in longitudinal or multilevel datasets. In such datasets, 

individual observations are nested in higher-level units: In multilevel datasets, individual 

observations (e.g., patients) may be nested within higher-level units (e.g., therapists and/or 

treatment centers), while in longitudinal datasets, measurements obtained at different 

occasions are nested within patients. Traditionally, such datasets are analyzed with GLMM-

type linear models, which account for the correlated nature of observations through the 

estimation of random effects. In (generalized) linear models, this has been found to yield 

more accurate standard errors and lower type-I and -II errors (e.g., Moerbeek, 2004; 

Steenbergen & Jones, 2002; Van den Noortgate, Opdenakker, & Onghena, 2005). Only 

recently have decision-tree methods been developed that allow for the analysis of such 

correlated data structures. Accounting for correlated structures in decision-tree analyses has 
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been shown to yield more accurate, as well as less complex trees (e.g., Fokkema et al., 2018; 

Hajjem, Larocque, & Bellavance, 2017; Sela & Simonoff, 2012). Further technical detail on 

the estimation of GLMM trees is provided in Fokkema et al. (2018). 

GLMM trees allow for the analysis of a wide range of research questions. First, 

outcome variables may be continuous, binary, or counts; predictor variables may be 

continuous or (ordered) categorical. Second, in addition to finding predictors of (clinical) 

outcomes, GLMM trees can also be used to find moderators in the association between 

predictor and outcome variables in multilevel and longitudinal datasets. Examples of 

particular relevance to psychotherapy research include the detection of moderators of 

treatment effect, where the interest is in detecting subgroups which show differential effects 

for two or more treatments (Doove, Dusseldorp, Van Deun, & Van Mechelen, 2014; Fokkema 

et al., 2018; Seibold, Zeileis, & Hothorn, 2016). Another example is the detection of 

subgroups in growth curve models, where the interest is in finding subgroups with different 

initial levels of symptomatology, or different patterns of change over time. As such, GLMM 

trees provide a flexible statistical tool for informing a wide range of clinical decision 

questions. In the current paper, we focus on a relatively simple prediction problem, where the 

value of treatment outcomes are predicted using a range of baseline patient characteristics, 

while possible differences due to service providers are accounted for. Although GLMM trees 

can be applied to more complex research questions, the aim of this paper is to provide an 

introductory primer on the use of a decision-tree method for multilevel and longitudinal data. 

Readers interested in more complex analyses can consult Fokkema et al. (2018) and/or the 

examples in the documentation of package glmertree (Zeileis & Fokkema, 2019), that can be 

used for fitting GLMM trees.  

It should be noted that there are other algorithms and software packages that allow for 

recursive partitioning of GLMM-type models, such as SEM trees (Brandmaier, von Oertzen, 



10   MIXED-EFFECTS REGRESSION TREES 
 

McArdle, & Lindenberger, 2013), longRpart (Abdolell, LeBlanc, Stephens, & Harrison, 2002) 

and longRpart2 (Stegmann, Jacobucci, Serang, & Grimm, 2018). In the current paper, we 

focus on GLMM trees, because it allows for partitioning based on variables measured at both 

the lowest level (e.g., patient level) as well as higher levels (e.g., therapist, treatment center, 

region level). The other packages mentioned allow for partitioning based on variables 

measured at the highest level only, which precludes analyses such as the one in the current 

paper, where we want to detect subgroups with different treatment outcomes based on patient-

level characteristics (level I), while accounting for treatment outcome differences between 

treatment centers (level II).  

 
 

Method 

Dataset 

 Edbrooke-Childs et al. (2017) analyzed a sample of 3,256 young people who received 

treatment at one of 13 mental-health service providers in the UK. The analyses were 

performed on complete cases. Summary statistics for age, gender and ethnicity are provided in 

Table 1. Potential predictor variables were demographic variables (age, gender, ethnicity), 

case characteristics (coding the presence or absence of several mental and behavioral 

disorders), and severity characteristics (measures of impairment in functioning) assessed at 

baseline. 

Specifically, ethnicity was captured using the categories from the 2001 Census from 

the UK Office for National Statistics, and grouped for analysis according to the levels 

reported in Table 1. Case characteristics included absence/presence of hyperactivity, 

emotional problems, conduct problems, eating disorder, self-harm, autism, special education 

needs and other presenting problems (Table 1). Furthermore, the presence of case 

characteristics occurring with a frequency of <5% in the sample were grouped into a single 
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‘infrequent characteristics’ indicator (i.e., psychosis, intellectual disability, developmental 

disorder, habit disorder, substance misuse, child protection concerns, and Child Act order in 

place). Severity characteristics were assessed using the impact supplement of the Strengths 

and Difficulties Questionnaire (SDQ; Goodman, 1997). This yielded six indicators for the 

severity of mental-health problems: duration (rated on a 5-point scale ranging from absent to 

> 1 year), overall distress, and impairment on home life, friendships, classroom performance, 

and leisure activities (all rated on a 3-point scale ranging from little or no severity to high 

severity).  

 

----------- Place Table 1 about here ---------- 

 

Treatment outcome was quantified as the total mental-health difficulties score on the 

SDQ, assessed approximately 4-8 months after the first assessment. This score was computed 

by summing the four difficulties subscales of the SDQ (conduct problems, emotional 

problems, peer problems, hyperactivity; descriptive statistics presented in Table 1). Two 

outcome variables were calculated: An unadjusted treatment outcome, which is the 

standardized value of the total difficulties score corrected for the baseline assessment, with 

higher values indicating poorer outcomes. Secondly, an adjusted treatment outcome was 

calculated, which corresponds to the so-called ‘added value score’ on the SDQ1 (Ford, 

Hutchings, Bywater, Goodman, & Goodman, 2009). It reflects the standardized difference 

between observed and expected change in mental health difficulties, and aims to correct for 

spontaneous improvement and regression to the mean. It can be interpreted as an effect size, 

                                                           
1 The standardized added value score is computed as .46 + .16*total difficulties at T1  + .04*total 

impact at T1 - .06*emotional problems at T1 – total difficulties T2 
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where positive values indicate more improvement and negative values indicate more 

deterioration than expected. We analyzed both treatment outcomes, because the unadjusted 

outcome can be interpreted as a weighted change score, while the adjusted outcome can be 

interpreted as deterioration compared to what would have been expected, had the young 

person not accessed services.  

 

Statistical Analyses 

All analyses were performed in the statistical programming environment R (R Core 

Team, 2020). Mixed-effects regression models were fitted using package lme4 (Bates, 

Maechler, Bolker, & Walker, 2015). A random intercept was estimated with respect to 

mental-health service provider and restricted maximum likelihood (REML) estimation was 

employed. GLMM trees were fitted using package glmertree (Zeileis & Fokkema, 2019). 

Again, a random intercept was estimated with respect to mental-health service provider. 

Default settings were employed: REML was employed for estimation of the fixed- and 

random-effects parameters, an α level of .05 was employed and p values for the variable 

selection tests were Bonferroni corrected. Random forests were fitted using package 

randomForest (Liaw & Wiener, 2002). We included the indicator for mental-health service 

provider as a categorical predictor variable. Furthermore, earlier studies have found good 

predictive performance for the standard random forest algorithm in multilevel data when the 

intra-class correlation was small (Hajjem, Bellavance, & Larocque, 2014; Karpievitch, Hill, 

Leclerc, Dabney, & Almeida, 2009; Martin, 2015). Because this was also the case in our 

study, we employed default settings: no a-priori restrictions on tree size were applied, 500 

bootstrap samples were drawn, and for selecting each split, a random sample of 1/3 of the 

potential predictor variables was used. 
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To estimate the models’ predictive accuracies, we employed 10-fold cross validation. 

Cross validation provides a more realistic estimate of generalization error than calculating 

variance explained in the training sample (Hastie, Tibshirani, & Friedman, 2009). Cross-

validated predictions for the mixed-effects regression and GLMM tree models were computed 

based on both random and fixed effects, so that predictions for all fitted models captured the 

effect of mental-health service provider. Prediction error was quantified as the mean squared 

difference between predicted and observed response variable values (MSE). The standard 

error of the MSE was computed as the standard deviation of the squared difference between 

predicted and observed response variable values, divided by the square root of the sample 

size. Furthermore, we standardized MSE values through dividing by the sample standard 

deviations of the response variables. This yields a measure which can be interpreted as the 

multiple R coefficient. In the current study, this multiple R value may seem relatively low, 

compared to values that readers are used to, because it was computed based on cross-

validation instead of training data and because the treatment outcome variables were 

computed so that they already accounted for baseline SDQ values. 

Results 

In the original analyses of Edbrooke-Childs et al. (2017), linear mixed-effects models 

were fitted to predict treatment outcomes, in which fixed effects were estimated for the 

demographic, case and severity characteristics, and a random intercept was estimated with 

respect to service provider. This yielded seven statistically significant predictors of treatment 

outcome (Table 2), and estimated intra-class correlations of 0.05 to 0.07. We applied the 

GLMM tree algorithm to the same data and research question. As in the original analyses, 

demographic, case and severity characteristics were included as potential predictor variables 

(see Table 1), and a random intercept was estimated with respect to service provider. 



14   MIXED-EFFECTS REGRESSION TREES 
 

 

----------- Place Table 2 about here ---------- 

 

The GLMM tree for the unadjusted treatment outcome is presented in Figure 1. Higher 

values of the unadjusted treatment outcome reflect poorer treatment outcomes. Age at referral 

was selected as the first predictor variable, with poorer average treatment outcome for those 

aged ≤ 9.1, compared to those aged > 9.1 at referral. In the lower age group, presence of 

emotional problems was selected as the second predictor variable, with the absence of 

emotional problems yielding poorer treatment outcomes, on average. In the group with 

emotional problems, gender was selected as a predictor variable: boys had poorer treatment 

outcomes than girls, on average. In the group with higher age at referral (age at referral > 9.1), 

the presence of an autistic disorder was selected as a second predictor variable: those with an 

autistic disorder had poorer treatment outcomes, on average.  

 

----------- Place Figure 1 about here ---------- 

 

The terminal nodes in Figure 1 also present standard errors for the estimated subgroup 

means. These standard errors are computed based on a confirmatory mixed-effects model, 

which accounts for variability between treatment centers, but not for the searching of the tree 

structure. Thus, they provide a useful indication of variability, but may underestimate the true 

variability somewhat. Taking into account the standard errors, we can conclude that the 

unadjusted treatment outcomes do not differ significantly between nodes 3 and 5, between 

nodes 3 and 9, between nodes 5 and 9, between nodes 6 and 8. 
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The predicted values of the random intercept are depicted in Figure 2, which indicates 

a quite symmetric distribution around the mean of 0. The estimated intra-class correlation was 

0.06. Poorest outcomes were observed for service provider 113, and best outcomes were 

observed for service provider 138. Note that the error bars in Figure 2 do not account for the 

searching of the tree structure and may therefore be too small. 

 

----------- Place Figure 2 about here ---------- 

 

The GLMM tree for the adjusted treatment outcome is presented in Figure 3. Lower 

values of the adjusted treatment outcome reflect poorer outcomes. Again, we see that that 

lower age at referral is associated with poorer treatment outcomes. In both age groups, the 

next split was based on the parent-reported impairment of mental-health problems on home 

life, with stronger impairment on home life yielding better outcomes (than would be expected 

based on baseline SDQ mental-health difficulty scores). In the group aged ≤ 9.1 at referral, a 

third split was created based on ethnicity, with Asian and non-reported or missing ethnicity 

yielding better treatment outcomes, compared to other ethnicity groups. This split should be 

interpreted with care: The two resulting subgroups (especially terminal node six) are rather 

small, yielding less reliable estimates of the difference between the two groups, which is also 

evidenced by the relatively large standard errors. Furthermore, the split was partly based on 

ethnicity being not reported or missing, making it difficult to draw conclusions on the 

meaning of this split. Taking into account the standard errors reported in the terminal nodes, 

we can conclude that the adjusted treatment outcomes do not differ significantly between 

nodes 3 and 6, between nodes 5 and 8, and between nodes 5 and 9. 
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----------- Place Figure 3 about here ---------- 

 

The predicted values of the random intercept are depicted in Figure 4, which indicates 

a rather symmetric distribution around the mean of 0. The intra-class correlation was 0.05. 

Again, poorest outcomes were observed for service provider 113, and best outcomes were 

observed for service provider 138.  

 

----------- Place Figure 3 about here ---------- 

 

We compared predictive accuracy of GLMM trees with that of traditional GLMMs 

and random forests using 10-fold cross validation. Results are presented in Table 3, which 

shows that GLMM trees yielded accuracy on par with that of the traditional GLMMs and the 

random forests. The traditional GLMMs yielded only slightly higher predictive accuracy than 

GLMM trees. Random forests yielded somewhat lower predictive accuracy than both 

traditional GLMMs and GLMM trees. Taking into account the standard errors of the MSEs 

indicates that predictive accuracy did not differ significantly between methods. 

 

----------- Place Table 3 about here ---------- 

 

The cross-validated multiple R values indicate that the predicted values are not very 

precise. This is in large part also due to both treatment outcomes already being corrected for 

baseline SDQ mental-health difficulty scores, which were a strong predictor of later difficulty 

scores, as indicated by the estimated sample correlation of 0.63. Although the predicted 
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values may be too unreliable for individual predictions, they do provide useful group-level 

insights. For example, the GLMM trees in Figures 1 and 3 identify those subgroups at risk for 

poorer treatment outcomes than can be expected based on baseline SDQ mental-health 

difficulty scores. 

 

 
 
 

Discussion 

Our study found no significant differences in predictive accuracy between GLMM 

trees, traditional GLMMs and random forests. This is in line with earlier studies comparing 

mixed-effects decision-tree algorithms and traditional mixed-effects models (e.g., Fokkema et 

al., 2018; Hajjem et al., 2017; Sela & Simonoff, 2012). The finding that random forests did 

not outperform single decision trees or mixed-effects linear models was somewhat surprising, 

but similar findings have been reported in other studies (e.g., Jie et al., 2019; Martin, 2015; 

Rudin, 2019). 

Both the traditional GLMMs and GLMM trees found lower age at referral, presence of 

an autistic disorder and ethnicity to be associated with treatment outcomes. The GLMM trees 

additionally identified presence of emotional problems, gender and parent-reported 

impairment of mental-health problems on home life as predictors of treatment outcome. The 

traditional GLMMs additionally identified presence of eating disorder, hyperactivity, 

infrequent case characteristics and symptom duration as predictors of treatment outcome. 

Random forests fitted on the complete dataset included all predictor variables in the predictive 

model. Thus, in our dataset, GLMM trees required the lowest number of variables for making 

a prediction on treatment outcomes, requiring the assessment of two to three variables for 

making a prediction. The traditional GLMMs require assessing three (for the adjusted 
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treatment outcome) or six variables (for the unadjusted treatment outcome). Furthermore, the 

GLMM trees directly show how the relevant patient characteristics should be combined to 

decide whether a patient is at risk for poorer treatment outcomes. With the traditional 

GLMMs, all relevant predictor variables would have to be evaluated, multiplied by their 

respective coefficients and added together to make a prediction. With the random forests, all 

18 predictor variables would have to be assessed and inputted into a computer program in 

order to make a prediction on treatment outcome. 

In clinical practice, the fitted GLMM trees could be used to inform policy or treatment 

decisions. For example, the tree for the unadjusted treatment outcome (Figure 1) indicates that 

clients who are younger than 9 years of age at referral and who do not present with emotional 

problems, and clients over 9 years of age presenting with autism are at risk for even poorer 

treatment outcomes, than can be expected based on baseline SDQ mental-health difficulty 

scores. If additional resources or more intensive treatments are available, but cannot be 

provided to all clients, perhaps these should be provided to those client groups. 

A major advantage of decision tree-methods is that they involve few assumptions 

about the distribution of the data. Traditional GLMMs, for example, assume linear 

associations between predictor and outcome variables and a normal distribution for the 

model’s residuals. Violations of these assumptions may yield spurious effects, especially in 

mixed-effects models (e.g., Bauer & Cai, 2009). GLMM trees do not involve these 

assumptions, but do involve assumptions about the distribution of the random effects. Like 

with traditional GLMMs, correct specification of the random-effects structure is therefore an 

important prerequisite for obtaining valid results with the GLMM tree algorithm. The tutorial 

in the supplementary material illustrates how to assess potential model misspecifications. 

 It is important to note that that recursive partitioning methods are exploratory 

techniques. Especially in small samples, fitted decision trees may differ from sample to 
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sample. However, this disadvantage likely applies more strongly to traditional regression trees 

than mixed-effects regression trees. In (generalized) linear models, the relative advantages of 

mixed-effects methods over ANOVA and GLM-type models have been widely shown and 

discussed (lower Type I error, more accurate standard errors; e.g., Borenstein, Hedges, 

Higgins, & Rothstein, 2010; Gueorguieva & Krystal, 2004; Nich & Carroll, 1997). Similarly, 

lower Type I error and higher accuracy have also been observed for mixed-effects regression 

trees, compared to standard regression trees (Fokkema et al., 2018; Hajjem et al., 2017; Sela 

& Simonoff, 2012).  

With GLMM trees, like with any other statistical method, larger sample sizes will 

likely yield more accurate and stable results. However, sample size requirements cannot be 

computed in advance, because exploratory methods do not have a concept of statistical power. 

Users should thus keep in mind that a trade-off between sample size and the signal-to-noise 

ratio applies. That is, the stronger the association between potential predictor variables and the 

response, the more likely this association will be recovered by the fitted tree. Also, the larger 

the number of the potential predictor variables that are in fact noise variables (i.e., not 

associated with the response), the less likely that the actual associations in a dataset will be 

recovered by the fitted tree. 

In the GLMM tree algorithm, sample size and the number of potential predictor 

variables directly affect the power of the variable selection tests: If sample size increases, the 

power of these tests increases, increasing the likelihood that at least on predictor variable in 

the current node obtains a p value lower than the pre-specified α level. The p values are 

Bonferroni corrected by default, based on the number of potential predictor variables. Thus, 

although there are no a-priori constraints on the number of predictor variables that can be 

specified, increasing the number of potential predictor variables effectively increases the p 

values, reducing the power to detect splits. 
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As mentioned in the Introduction, the use of statistical tests for variable selection also 

provides a natural stopping criterion. Recursive partitioning algorithms that do not separate 

variable and cut-point selection generally grow a very large tree first, which is subsequently 

reduced in size through post-pruning (e.g., Rokach & Maimon, 2008). The pre-specified α 

level for the variable selection tests can therefore be seen as the main tuning parameter. For 

many data problems, the default value of α = .05 will suffice. However, for datasets with 

(very) large sample sizes, this may yield a tree that is too large to interpret and thus a lower 

value of α may be preferred. For datasets with a large number of potential predictor variables, 

the Bonferroni correction may be overly conservative, resulting in too few splits (e.g., no 

split) being made. In such cases, users may prefer a higher value of α, or to not apply the 

Bonferroni correction. When a higher or lower value of α is be preferred, the value that 

optimizes predictive accuracy can best be determined through cross validation. 

 Due to the exploratory nature of decision tree analyses, in most cases it would be 

advisable to validate the results in a different sample, or to at least evaluate predictive 

accuracy of the decision tree using cross-validation methods. This prevents overly optimistic 

estimates of predictive accuracy that results from using the same data that was used for 

training the model (e.g., Hastie et al., 2009; Yarkoni & Westfall, 2017). For this reason, we 

applied 10-fold cross validation to assess predictive accuracy in the current study.  

 We hope this paper has shown the potential of GLMM trees to generate decision 

trees from empirical data with a multilevel structure. The GLMM tree algorithm can also be 

employed for subgroup detection in more complex research designs, like growth curve models 

or clinical trials comparing the effects of two or more treatments. Readers interested in such 

research questions, or the computational details of the GLMM tree algorithm are encouraged 

to read Fokkema et al. (2018). Readers interested in a more general introduction to recursive 

partitioning methods are encouraged to read Strobl, Malley, and Tutz (2009). Finally, readers 
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interested in fitting GLMM trees to their own data can do so using R (R Core Team, 2020) 

and the R package glmertree (Zeileis & Fokkema, 2019). The tutorial in the supplementary 

material provides several examples, instructing readers on applying the GLMM tree algorithm 

to their own data and interpreting the results. 
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Table 1 
Descriptive statistics of the full sample (N = 3,256). 

 

  M (SD) or % Min Max 

Age  11.33 (3.42) 4.00 18.00 

Gender Female 48%   

Ethnicity White  69%   

 Mixed 5%   

 Asian 8%   

 Black or Black British 6%   

 Other 5%   

 Not reported or missing 13%   

Case 
characteristics 

Hyperactivity  10%   

Emotional problems 55%   

 Conduct problems 20%   

 Eating disorder 5%   

 Self-harm 8%   

 Autism 9%   

 Special education needs 8%   

 Other presenting problems 22%   

 Infrequent characteristics 12%   

Total difficulties T1 18.49 (7.13) 0.00 39.00 

Total difficulties T2 15.48 (7.87) 0.00 38.00 

Unadjusted treatment outcome 0.00 (1.00) -4.51 5.12 

Adjusted treatment outcome 0.16 (1.21) -6.44 5.86 
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Table 2 
Statistically significant predictors of treatment outcome according to 
the original analyses of Edbrooke-Childs et al. (2017) 

Unadjusted treatment outcome Adjusted treatment outcome 

Age Autism 

Ethnicity Infrequent case characteristics 

Eating disorder Disorder duration 

Hyperactivity  

Autism  

Infrequent case characteristics  

 

 

 

 

 

Table 3  
Prediction error of GLMM trees, traditional GLMMs and random forests, estimated through 
10-fold cross validation. 

 Unadjusted treatment outcome Adjusted treatment outcome 

Method R MSE (se) R MSE (se) 

GLMM tree .252 0.931 (0.028) .179 1.421 (0.043) 

Traditional 
GLMM 

.253 0.930 (0.027) .205 1.406 (0.043) 

Random forest .195 0.956 (0.028) .049 1.464 (0.044) 

Note. MSE denotes mean squared error; se denotes standard error; R is the square root of the 
treatment outcome variance explained by the predicted values; it can be interpreted as the 
correlation between predicted and observed. 
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Figure 1. GLMM tree for the unadjusted treatment outcome. Higher values represent poorer 

treatment outcomes. Panels depict subgroup sizes (N) and estimated fixed-effects means (M) 

with standard errors (SE). Note that SEs account for random variability between treatment 

centers, but not for the searching of the tree structure.  
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Figure 2. Random-effects predictions of the GLMM tree for the unadjusted treatment 

outcome. The y-axis represents indicators for service provider. The x-axis represents the 

predicted value of the random intercept, where higher values represent poorer treatment 

outcomes. Blue dots represent point predictions, black lines represent point predictions ±1.96 

times the standard error. Note that these standard errors do not account for the searching of 

the tree structure. 
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Figure 3. GLMM tree for the adjusted treatment outcome. Lower values reflect poorer 

treatment outcomes. Panels depict subgroups sizes (N), estimated fixed-effects means (M) and 

their respective standard errors (SE). Ethnicity was coded White (1), Mixed (2), Asian (3), 

Black or Black British (4), Other (5), Not reported or missing (6). Note that SEs account for 

random variability between treatment centers, but not for the searching of the tree structure.  
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Figure 4. Random-effects predictions of the GLMM tree for the adjusted treatment outcome. 

The y-axis represents indicators for service provider. The x-axis represents the predicted 

value of the random intercept, where lower values represent poorer treatment outcomes. Blue 

dots represent point predictions, black lines represent point predictions ±1.96 times the 

standard error. Note that these standard errors do not account for the searching of the tree 

structure. 

 


