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Prediction rule ensembles (PREs)

An interpretable machine-learning method

Example dataset

Penninx et al. (2011): Predict chronic depression
Sample: Respondents with current depressive disorder (N = 682)
Response: Depression diagnosis (at two-year follow-up)

20 possible predictors (at baseline):

- Gender, age, years of completed education

- Type of depressive and/or anxiety disorder(s)

- Symptom scale scores on depression and anxiety
- Receiving pharmacotherapy, psychotherapy

Conditional inference tree
(Hothorn et al., 2006)

Single trees

Good: Easy to interpret and apply
Bad: Not most accurate method
Ugly: Unstable
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Single trees

Good: Easy to interpret and apply
Bad: Not most accurate method
Ugly: Unstable
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Tree ensembles

- Good: High predictive accuracy
- Bad: Difficult to interpret and apply
- Many (complex) trees
- Prediction requires lots of computation and
information
- Prediction rule ensembles: Only keep parts that
contribute most to accuracy. E.g.:
- RuleFit (Friedman & Popescu, 2008)
- Node Harvest (Meinshausen, 2010)

1)
2)

3)

4)

RuleFit
(Friedman & Popescu, 2008)

Draw samples from training data
Fit tree on each sample
- Classification and regression tree (CART) algorithm
- Boosting (learning rate > 0)
Create initial ensemble, comprising
- every node from every tree as a predictor (rule) and
- every original predictor variable as a predictor
Select final ensemble by sparse regression on training data
- Lasso, ridge or elastic net

From trees to rules

(%) = I(IDS < 13)
r3(%) = I(IDS < 13) - I(ADuse = FALSE)
7,(%) = I(IDS < 13) - I(ADuse = TRUE)
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r6(x) = I(IDS > 13) - I(IDS < 21)
(%) = I(IDS > 13) - I(IDS > 21)
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From trees to rules

(%) = I(IDS < 13)

r3(%) = I(IDS < 13) - I(ADuse = FALSE)
7,(%) = I(IDS < 13) - I(ADuse = TRUE)
re(x) = I(IDS > 13) - I(IDS < 21)

7,(x) = [(IDS > 13) - I(IDS > 21)
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1,(x) = ADuse m=1
IDS | ADuse | .. | r, ry r, re r;
5 | FALSE 1] 1]|0]o0]o0
15 | FALSE o|lo|o|1]o0
18 | TRUE 0 0 0 1 0
25 | TRUE 0 0 0 0 1

RuleFit
(Friedman & Popescu, 2008)

1) Draw samples from training data
2) Fit tree on each sample
- Classification and regression tree (CART) algorithm
- Boosting (learning rate > 0)
3) Create initial ensemble, comprising
- every node from every tree as a predictor (rule) and
- every original predictor variable as a predictor
4) Select final ensemble by sparse regression on training data

- Lasso, ridge or elastic net

1)
2)

3)

4)

R package pre
(Fokkema & Christoffersen, 2019)

Draw samples from training data

Fit tree on each sample
- Unbiased recursive partitioning (Hothorn et al., 2006)
- Boosting (learning rate > 0)
- Random forest (mtry < p)

Create initial ensemble, comprising
- every node from every tree as a predictor (rule) and
- every original predictor variable as a predictor

Select final ensemble by sparse regression on training data
- Lasso, ridge or elastic net
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PRE for predicting chronic depression

PRE for predicting chronic depression
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Additional features Example dataset 2
- (Non-) negativity constraints: - Campbell et al. (2014): RCT comparing outpatient
- In order to only identify higher-risk (or lower-risk) subgroups, can treatments for drUg abuse
enforce rules with positive (or negative) coefficients only to be - TAU vs. TES (TAU + therapeutic education system)
selected - 478 participants with complete data
- Supported response variable types: - Response: No. of substance use days in last week of
- Binary, multinomial Term  Coefficient Description treatment
— . (Intercept) — -0218 1 . .
- (Multivariate) Continuous Wit 0246 IDS > 10 LOlmax > 0263 - 56 potential predictors:
- Counts rle27 0152 IDS > 13 & LCTmax > 0.362 - Socio-demographic variables
- Survival rule67 0.110 IDS > 10 & LCImax > 0.328 - ltems measuring:
. rlesd 0083 IDS < 16 & AO > 17 . .
- ‘Confirmatory’ rules: nlesl 0016 LCLuax > 0.260 & IDS > 0 - Quality of life

- Apply no penalty to rules or predic  rue2s 0003
predictive of the response

IDS < 16 & GAD € {Negative}

- Coping strategies
- Mental health problems

- Receiving TES included as confirmatory rule

Predicting substance use

Term  Cocfficient  Description
(Intercept) 0.559 1
rule20 -0.195 weekl < 0 & BSNAUSE.T0 < 2
trt € {TES} -0.177 trt € {TES}
rulel6 -0.157 weekl < 2 & CSCALM.TO > 2
rule30 0120 weekl < 0 & BSTENSE.TO < 3
weekl 0.060 0 < weekl <7

Resolution

Does pre eliminate the bad?
Does the good survive?
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Predictive accuracy

Chronic Depression Substance Use
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Results based on 100 CV repeats (Fokkema & Strobl, in press)

Interpretability
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Results based on 250 CV repeats (Fokkema, in press)

Contributions

- PREs balance accuracy (of tree ensembles) and
interpretability (of single trees)
- Package pre improves on original RuleFit
algorithm:
- Selects lower number of rules and variables
- Yields higher predictive accuracy

- Support for
- Several types of response variables
- (Non-) negativity constraints
- Confirmatory rules

Challenges

- Predictions are more stable, but the fitted model (selected
rules and linear terms and their coefficients) still shows
instability

- Property inherited from (lasso) regression and decision trees
- Not unique for these methods. E.g., Effron (2019): Prediction is
easy, attribution is difficult

- Future work:

- Dealing with missing data
- Better (i.e., more sparse, more stable) rule and variable
selection:
- Alternatives to lasso / glmnet
- Accounting for multilevel structures

Software and further reading

Fokkema, M. & Christoffersen, B. (2019). pre: Prediction Rule Ensembles.

R package version 0.7.1 (available from CRAN).
url: https://github.com/marjoleinF/pre

Fokkema, M. (in press). Fitting prediction rule ensembles with R package
pre. Journal of Statistical Software.
pre-print: https://arxiv.org/abs/1707.07149

Fokkema, M. & Strobl, C. (in press). Fitting prediction rule ensembles to
psychological research data: An introduction and tutorial.
Psychological Methods.
pre-print: https://arxiv.org/abs/1907.05302

m.fokkema@fsw.leidenuniv.nl
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