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Prediction rule ensembles (PREs) 

An interpretable machine-learning method

Example dataset

Penninx et al. (2011): Predict chronic depression

Sample: Respondents with current depressive disorder (N = 682)

Response: Depression diagnosis (at two-year follow-up)

20 possible predictors (at baseline):

- Gender, age, years of completed education

- Type of depressive and/or anxiety disorder(s)

- Symptom scale scores on depression and anxiety

- Receiving pharmacotherapy, psychotherapy 

- ….

Conditional inference tree 

(Hothorn et al., 2006)
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Tree ensembles
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Tree ensembles

- Good: High predictive accuracy

- Bad: Difficult to interpret and apply

- Many (complex) trees

- Prediction requires lots of computation and 
information

- Prediction rule ensembles: Only keep parts that 
contribute most to accuracy. E.g.:

- RuleFit (Friedman & Popescu, 2008)

- Node Harvest (Meinshausen, 2010) 

- …

RuleFit

(Friedman & Popescu, 2008)

1) Draw samples from training data

2) Fit tree on each sample

- Classification and regression tree (CART) algorithm

- Boosting (learning rate > 0)

3) Create initial ensemble, comprising

- every node from every tree as a predictor (rule) and

- every original predictor variable as a predictor

4) Select final ensemble by sparse regression on training data

- Lasso, ridge or elastic net

From trees to rules
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RuleFit

(Friedman & Popescu, 2008)

1) Draw samples from training data

2) Fit tree on each sample

- Classification and regression tree (CART) algorithm

- Boosting (learning rate > 0)

3) Create initial ensemble, comprising

- every node from every tree as a predictor (rule) and

- every original predictor variable as a predictor

4) Select final ensemble by sparse regression on training data

- Lasso, ridge or elastic net

R package pre

(Fokkema & Christoffersen, 2019)

1) Draw samples from training data

2) Fit tree on each sample

- Unbiased recursive partitioning (Hothorn et al., 2006)

- Boosting (learning rate > 0)

- Random forest (mtry < p)

3) Create initial ensemble, comprising

- every node from every tree as a predictor (rule) and

- every original predictor variable as a predictor

4) Select final ensemble by sparse regression on training data

- Lasso, ridge or elastic net

+    ….
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PRE for predicting chronic depression PRE for predicting chronic depression

- (Non-) negativity constraints:

- In order to only identify higher-risk (or lower-risk) subgroups, can 

enforce rules with positive (or negative) coefficients only to be 

selected

- Supported response variable types:

- Binary, multinomial

- (Multivariate) Continuous

- Counts

- Survival

- ‘Confirmatory’ rules:

- Apply no penalty to rules or predictor variables known a-priori to be 

predictive of the response 

Additional features Example dataset 2

- Campbell et al. (2014): RCT comparing outpatient 
treatments for drug abuse
- TAU vs. TES (TAU + therapeutic education system)

- 478 participants with complete data

- Response: No. of substance use days in last week of 
treatment

- 56 potential predictors: 
- Socio-demographic variables

- Items measuring:
- Quality of life

- Coping strategies 

- Mental health problems

- ...

- Receiving TES included as confirmatory rule

Predicting substance use Resolution

Does pre eliminate the bad?

Does the good survive?
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Predictive accuracy

Results based on 100 CV repeats (Fokkema & Strobl, in press)

Interpretability

Results based on 250 CV repeats (Fokkema, in press)

Contributions

- PREs balance accuracy (of tree ensembles) and 
interpretability (of single trees)

- Package pre improves on original RuleFit
algorithm:

- Selects lower number of rules and variables

- Yields higher predictive accuracy

- Support for

- Several types of response variables

- (Non-) negativity constraints

- Confirmatory rules

Challenges

- Predictions are more stable, but the fitted model (selected 
rules and linear terms and their coefficients) still shows 
instability
- Property inherited from (lasso) regression and decision trees

- Not unique for these methods. E.g., Effron (2019): Prediction is 
easy, attribution is difficult

- Future work:
- Dealing with missing data

- Better (i.e., more sparse, more stable) rule and variable 
selection:

- Alternatives to lasso / glmnet

- Accounting for multilevel structures

- …

Software and further reading

Fokkema, M. & Christoffersen, B. (2019). pre: Prediction Rule Ensembles. 

R package version 0.7.1 (available from CRAN).

url: https://github.com/marjoleinF/pre

Fokkema, M. (in press). Fitting prediction rule ensembles with R package 

pre. Journal of Statistical Software. 

pre-print: https://arxiv.org/abs/1707.07149

Fokkema, M. & Strobl, C. (in press). Fitting prediction rule ensembles to 

psychological research data: An introduction and tutorial. 

Psychological Methods. 

pre-print: https://arxiv.org/abs/1907.05302

m.fokkema@fsw.leidenuniv.nl
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